An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis.

نویسندگان

  • Jamey D Young
  • Jason L Walther
  • Maciek R Antoniewicz
  • Hyuntae Yoo
  • Gregory Stephanopoulos
چکیده

Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method that systematically and comprehensively divides EMU systems of equations into smaller subproblems to further reduce computational difficulty. These improvements led to a 5000-fold reduction in simulation times, enabling an entirely new and more complicated set of problems to be analyzed with NMFA. We simulated a series of nonstationary and stationary GC/MS measurements for a large E. coli network that was then used to estimate parameters and their associated confidence intervals. We found that fluxes could be successfully estimated using only nonstationary labeling data and external flux measurements. Addition of near-stationary and stationary time points increased the precision of most parameters. Contrary to prior reports, the precision of nonstationary estimates proved to be comparable to the precision of estimates based solely on stationary data. Finally, we applied EMU-based NMFA to experimental nonstationary measurements taken from brown adipocytes and successfully estimated fluxes and some metabolite concentrations. By using NFMA instead of traditional MFA, the experiment required only 6 h instead of 50 (the time necessary for most metabolite labeling to reach 99% of isotopic steady state).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INCA: a computational platform for isotopically non-stationary metabolic flux analysis

13C flux analysis studies have become an essential component of metabolic engineering research. The scope of these studies has gradually expanded to include both isotopically steady-state and transient labeling experiments, the latter of which are uniquely applicable to photosynthetic organisms and slow-to-label mammalian cell cultures. Isotopomer network compartmental analysis (INCA) is the fi...

متن کامل

Isotopically nonstationary MFA (INST-MFA) of autotrophic metabolism.

Metabolic flux analysis (MFA) is a powerful approach for quantifying plant central carbon metabolism based upon a combination of extracellular flux measurements and intracellular isotope labeling measurements. In this chapter, we present the method of isotopically nonstationary (13)C MFA (INST-MFA), which is applicable to autotrophic systems that are at metabolic steady state but are sampled du...

متن کامل

Nonstationary Metabolic Flux Analysis (NMFA) for the Elucidation of Cellular Physiology by

Many current and future applications of biological engineering hinge on our ability to measure, understand, and manipulate metabolism. Many diseases for which we seek cures are metabolic in nature. Small-molecule biomanufacturing almost always involves metabolic engineering. Biofuels, a current topic of great interest, is essentially a metabolic problem. Even bioprocesses that involve complex p...

متن کامل

Improved computational performance of MFA using elementary metabolite units and flux coupling.

Extending the scope of isotope mapping models becomes increasingly important in order to analyze strains and drive improved product yields as more complex pathways are engineered into strains and as secondary metabolites are used as starting points for new products. Here we present how the elementary metabolite unit (EMU) framework and flux coupling significantly decrease the computational burd...

متن کامل

OpenMebius: An Open Source Software for Isotopically Nonstationary 13C-Based Metabolic Flux Analysis

The in vivo measurement of metabolic flux by (13)C-based metabolic flux analysis ((13)C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a (13)C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 99 3  شماره 

صفحات  -

تاریخ انتشار 2008